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Abstract -Three Born-von Kkmhn lattice dynamical models obtained from neutron measurements 
and elastic constant measurements on Ni have been considered chiefly to calculate the Debye- 
Waller factor Debye temperature, OM( T ) .  The results are compared with X-ray experimental data in 
the region 100°K s T == 520°K. Also considered are the dispersion curves, the moments of the fre- 
quency spectrum and the dependence of these moments upon the temperature. It is seen that for P ( T  = 
296"K), the models based on the neutron data yield 403" and 406"K, the model based on the elastic 
constant data yields 425"K, and the X-ray experimental value is 410°K. It appears that at high tempera- 
tures the temperature dependence of @( T )  determined using the model based on the elastic constant 
data agrees closely with experiment whereas the temperature dependence of @ ( T )  determined from 
thermal expansion effects alone is too small by a factor of two. However, due to experimental scatter, 
it is possible that only volume expansion effects are important in determining the temperature de- 
pendence of O M (  T )  at high temperatures. 

1. INTRODUCTION 

THE Debye-Waller factor Debye tempera- 
ture, @( T ) ,  for Ni, has been determined [ 11 by 
X-ray relative intensity measurements in the 
region 100°K S T s 520°K. Wilson[l] inter- 
preted the data with the use of a continuum 
model based on the measured elastic constants 
[21. In this paper[3] results of calculations of 
P ( T )  for Ni based on simple Born-von 
Khrmhn lattice dynamical models are pre- 
sented and the comparison between theory 
and experiment is shown. Several studies of 
W ( T ) ,  based on the use of force models or 
on analyses of thermodynamic data have 
appeared in the literature for other substances 
[4,5]. We used a fourth nearest neighbor 
Begbie-Born model, a fifth nearest neighbor 
axially symmetrical model, and a first nearest 
neighbor Begbie-Born model. The force 
constants of the latter model were deter- 
mined from available elastic constant data [2] 
in the usual way [6-81. Hopefully, anharmonic 

or electron-phonon interaction effects in the 
Debye-Waller factor are accounted for in an 
approximate way by the inclusion of the 
temperature dependences of the elastic 
constants and equilibrium volume [9] in 
determining the harmonic force constants. 
It should also be pointed out that the elastic 
constant measurements were performed in 
the presence of a magnetic field. The force 
constants given by Birgeneau et al. [ 101 were 
used for the remaining models, which are 
based on the neutron data of Birgeneau et al. 
at T = 296"K[103. Birgeneau et al. presented 
results of calculations of the frequency spec- 
trum, the specific heat Debye temperature 
and several moments of the frequency 
spectrum for the fourth neighbor model. 

A recent calculation[l 11, on the basis of 
the Birgeneau et al. fourth neighbor model, 
of the Debye-Waller factor for nickel at 
T = 300°K has been brought to the author's 
attention by the referee. In their calculation 
Barron and Smith use 1000 phonons in the 

*This work was supported in part by the National Aero ~ i l l ~ ~ i ~  and an integration Over 
nautics and Space Administration through the Rensselaer 
Polvtechnic Institute Interdisciplinary Materials Research lI1 Oooth Of the zone with an 
Center, and the Army Research Office (Durham). approximation for the long wavelength modes. 
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In addition, Gleiss [ 121 has calculated the 
Mossabuer fraction for nickel at temperatures 
less than 200°K. Most of Gleiss’s calculations 
are based on the moments of the frequency 
spectrum with the use of high andlow tempera- 
ture expansions. He used moments for the 
Birgeneau et al. fourth nearest neighbor 
model and moments which he obtained from 
an analysis of the thermodynamic data. Gleiss 
also considered a second nearest neighbor 
model based on elastic constant data and he 
compared his results with Mossbauer measure- 
ments [ 131. We believe that our calculations 
constitute a significant improvement over 
previous work on the Debye-Waller factor for 
nickel because our method of calculation (to 
be discussed) appears to be more exact than 
the methods used by Barron and Smith and 
by Gleiss, and because our calculations 
involve a few models, including the Birgeneau 
et al. fifth neighbor model (not considered 
in previous studies) and a wide range of 
temperatures. 

In the harmonic or quasi-harmonic approxi- 
mation OM(T) for a cubic monatomic crystal 
is given by 

where x =  P I T  and where evib(w, T )  is the 
contribution to the vibrational energy of the 
mode of frequency w and of wave vector and 
polarization index J’ and j ,  respectively. 
Although the left hand side of (1) can be 
evaluated with the use of a calculated fre- 
quency distribution [ 141, the normal mode 
sums discussed in this paper were performed 
directly over a cubic grid of 2992 points in 
the irreducible element of the Brillouin zone. 

In order to make further comparison among 
the various models, the dispersion curves 
and the moments of the frequency distribu- 
tion at T = 296°K were also considered. The 
moments of the frequency distribution are 

CLDMAN 

Deb ye temperature, 

where (on) is the n’th moment of the fre- 
quency distribution and where the limit of 
the right hand side of (2) is taken for n = - 3 
and for n = 0. We note that for values of n 
of -3, 2, -1, -2, and 0, e&) = eoc, Omc, 
eoM, OmM, and Oms, respectively. The super- 
scripts c and s denote specific heat and entropy, 
respectively, and the subscripts refer to 
limiting temperatures . 

2. RESULTS 
The dispersion curves for the symmetry 

directions are shown in Fig. 1 for the first 
neighbor Begbie-Born model. The elastic 
constants at T = 300°K were used. The small 
disagreement between theory and experi- 
ment in the long wavelength region represents 
a discrepancy between elastic constant 
measurements and neutron measurements 
which has been noted previously[lO, 161 and 
which is of theoretical interest [ 161. Results 
for the Birgeneau et al. models, which were 
fitted to the experimental data points to within 
about 2 per cent, are not shown in the figure. 

In Fig. 2 the comparison between the Barron 
Plots, i.e. O,(n) vs. n, is shown for the three 
models considered in this paper at room 
temperature. The values of OD(- 3 )  were 
obtained with the use of de Launay’s tables.* 
The calculations were performed at intervals 
of n of 0.5 and 1 depending on the range of n. 
The deviations of tRe values of OD(-  2.5) from 
the respective O,(n) curves are believed to be 
due to the crudeness of the grid size for 
calculating 6, ( n )  near n = - 3. The estimated 
errors in OD(n  5 - z )  and O M ( T ) ,  due to the 
grid size, are less than 2°K. 

The calculated values of P ( T )  for the 
fourth and first neighbor models are com- 
pared with experiment in Fig. 3. The minimum 
temperature interval for which the calculations 

F 

4 

9. 

* 
1 

expressed in terms Of an effective Debye 
frequency [ 151 or, equivalently, an effective 

*We agree with the elastic constant value of Alers et al. 
ofe,c = 476°K given in their Bull. Am. P ~ Y S .  SOC. paper. 
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E E 5 
Fig. 1. Dispersion curves for Ni at T = 296°K. L and T refer to the longitudinal and transverse 
branches. The circles correspond to the neutron measurements of Birgeneau et al. (reference [IO]), the 
solid lines correspond to the Begbie-Born first nearest neighbor model and the dashed vertical line 

corresponds to the Brillouin zone boundary. 

were performed was 20°K and was in the 
region 0 == T < 100°K. The effect of thermal 
expansion on OM( T ) ,  as shown in the figure, 
was obtained with the use of the approximate 
relation [ 181. 

where y is the Gruneisen parameter and 
where AOM and AV are the shifts in the Debye- 
Waller factor Debye temperature and equili- 
brium volume from their values at T = 296°K. 
It was assumed that y = 2 at all temperatures 
and the thermal expansion data of Nix and 

be noted that the W ( T )  curve for the fifth 
neighbor model lies less than 1 per cent above 
the P ( T )  curve for the fourth neighbor 
model. 

1 

ti McNair[9] for AVlV was used. It should also 

3. DISCUSSION 

Three Born-von K6rmbn force models for 
nickel have been considered chiefly to cal- 
culate OM( T )  , the effective Debye-Waller 

factor Debye temperature, and the results 
have been compared with experiment. Two 
of these models were proposed by Birgeneau 
et al. on the basis of their neutron data at 
T = 296"K[10]. The other model is the 
Begbie-Born first neighbor model which has 
been considered on the basis of the elastic 
constant data of Alers et al.[2]. The model 
which yields results in best agreement (less 
than 1 per cent) with the quoted experimental 
value of OM = (410+ 10)"K at room tempera- 
ture is the fifth neighbor axially symmetrical 
model considered by Birgeneau et al. How- 
ever, the difference in P ( T )  between the 
two Birgeneau et al. models is less than 1 
per cent which may be of the order of the 
error in OM(T) for either model due to un- 
certainties in the neutron data. The first 
neighbor model yields a result for OM at room 
temperature which is about 5 per cent above 
the respective Birgeneau et al. models and 
the quoted experimental value. It should be 
pointed out that all three models agree with 
the quoted experimental value for OM at room 
temperature to within the accuracy of the 
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Fig. 2. Barron plots for Ni at T = 296°K calculated from the three force models considered 
in the text. 0,(-3) was calculated using de Launay’s tables whereas other values of & ( n )  
were calculated using a cubic grid of 2,992 points in 1/48 of the Brillouin zone. The square 
refers to 0,(-3) calculated from Bozorth et al.3 elastic constant measurements (reference 
[ 171) and the circle and triangle refer to OD(- 2.5) calculated for the fourth and first nearest 
neighbour models, respectively. The fourth and fifth n.n. models cross between n = -2 and 

n = - 3 .  

latter value which is limited by experimental 
error and by the method[l] of determining 
P ( T )  from the data. However, as suggested 
by the investigation of Birgeneau et al., it 
is seen that the first neighbor model is in- 
adequate for representing the measured 
dispersion curves. 

Our results can easily be compared with 
the calculation of Barron and Smith[ 111 and 
with the experimental results of Inkinen and 
Suortti (see Barron and Smith for reference) 
at T = 300°K. Barron and Smith considered 
the coefficient B of sin28/X2 in the Debye- 
Waller factor. They report B = 0-381k 
0.008 A2 for the calculated value and B = 
0.37 2 0.02 A2 for the experimental value. The 
value k 0.008 Az is due to uncertainties in the 

neutron data. We obtain B = 0.377 A2 for the 
fourth neighbor model, which is in good 
agreement with Barron and Smith’s value, and 
B = 0.372 A2 for the fifth neighbor model. 

The effect of thermal expansion on BM(T) 
has been treated approximately. The justifica- 
tion of this treatment is suggested by the a 

experimental information on the temperature 
dependence of the Gruneisen parameter for 
Ni[19] and reference is made to previous 
papers[5, 20,211 for a more detailed dis- 
cussion of thermal expansion effects. It is 
hoped that the first neighbor Begbie-Born 
model provides an estimate of the full an- 
harmonic effect in P ( T )  although the 
theory may not be justifiable. A more exact 
treatment of the anharmonic effect is avail- 

1 
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Fig. 3. Effective Debye temperature for the Debye-Waller factor of Ni as a function of temperature. The 
effect of thermal expansion on the Birgeneau et al. fourth nearest neighbor model was obtained from the 

approximate relation AOM/OM = - yAV/Vwith y = 2. The circles represent the experimental values. 

able for a mathematically simplified force 
mode1[22]. It is of interest that at high 
temperature the temperature dependence of 
OM(T) as given by the first neighbor Begbie- 
Born model is in close agreement with experi- 
ment, as seen in Fig. 3. However, due to 
experimental scatter, the temperature 
dependence of P ( T )  given by the thermal 
expansion effect alone cannot be ruled out. 

Recently, Gilat and Nicklow [23] have 
introduced the parameter 

rn = -- 

B 
< 

V AOD(n)* 
O D ( ~ )  AV 

where the A operator takes the difference 
in the quantity between two temperatures 
(we used 100" and 500°K). The plot of Tn vs. 
n for Ni is shown in Fig. 4. The results are 
similar to those of Gilat and Nicklow who 
studied force models based on neutron data 

quantity Tn is a monatonically decreasing 
for aluminum at different temperatures. The 
function of n and has values close to the value 
of the thermodynamic Gruneisen parameter 
for large n. As noted for aluminum[23] the 
relatively large fractional changes of the 
transverse mode frequencies as compared 
to the fractional changes of the longitudinal 
mode frequencies appears to be important in 
determining the shape of the yn  vs. n curve. 
However, we have found that in some direc- 
tions the fractional change in frequency for 
a particular polarization depends strongly on 
the wave length, and we intend to study the 
model dependence of the yn vs. n curve. 
Finally it is pointed out that experimental 
and theoretical studies of the lattice dynamics 
of Ni at various temperqtures are being carried 
out for temperatures greater than those 
considered in this paper[24]*. 

-aInO,(n) 
a In V 

*I am grateful to Dr. Earl F. Skelton for bringing this *Analogous to the parametery,(n) = 
work to my attention. 
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Fig. 4.Ap10tofyn = AeD(n) I/ vs. n, where the A operator takes the difference 
e&) A v  

in the quantity between T = 100"and T = 500°K. 
c 
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